40 research outputs found

    Impact of wearable physical activity monitoring devices with exercise prescription or advice in the maintenance phase of cardiac rehabilitation: systematic review and meta-analysis

    Get PDF
    BackgroundPhysical activity (PA) is a component of cardiac rehabilitation (CR). However, life-long engagement in PA is required to maintain benefits gained. Wearable PA monitoring devices (WPAM) are thought to increase PA. There appear to be no reviews which investigate the effect of WPAM in cardiac populations. We firstly aimed to systematically review randomised controlled trials within the cardiac population that investigated the effect WPAM had through the maintenance phase of CR. We specifically examined the effect on cardiorespiratory fitness (CRF), amount and intensity of daily PA, and sedentary time. Secondly, we aimed to collate outcome measures reported, reasons for drop out, adverse events, and psychological impact from utilising a WPAM.MethodsA systematic search (up to January 2019) of relevant databases was completed, followed by a narrative synthesis, meta-analysis and qualitative analysis.ResultsNine studies involving 1,352 participants were included. CRF was improved to a greater extent in participants using WPAM with exercise prescription or advice compared with controls (MD 1.65mL/kg/min;95% confidence interval [CI; 0.64-2.66]; p=0.001; I-2=0%). There was no significant between group difference in six-minute walk test distance. In 70% of studies, step count was greater in participants using a WPAM with exercise prescription or advice, however the overall effect was not significant (SMD 0.45;95% [CI; -0.17-1.07] p=0.15; I-2=81%). A sensitivity analysis resulted in significantly greater step counts in participants using a WPAM with exercise prescription or advice and reduced the heterogeneity from 81 to 0% (SMD 0.78;95% [CI;0.54-1.02];

    Establishing construct validity of a virtual-reality training simulator for hysteroscopy via a multimetric scoring system

    Get PDF
    Background: The aims of this study are to determine construct validity for the HystSim virtual-reality (VR) training simulator for hysteroscopy via a new multimetric scoring system (MMSS) and to explore learning curves for both novices and experienced surgeons. Methods: Fifteen relevant metrics had been identified for diagnostic hysteroscopy by means of hierarchical task decomposition. They were grouped into four modules (visualization, ergonomics, safety, and fluid handling) and individually weighted, building the MMSS for this study. In a first step, 24 novice medical students and 12 experienced gynecologists went through a self-paced teaching tutorial, in which all participants received clearly stated goals and instructions on how to carry out hysteroscopic procedures properly for this study. All subjects performed five repeated trials on two different exercises on HystSim (exploration and diagnosis exercises). After each trial the results were presented to the participants in the form of an automated objective feedback report (AOFR). Construct validity for the MMSS and learning curves were investigated by comparing the performance between novices and experienced surgeons and in between the repeated trials. To study the effect of repeated practice, 23 of the novices returned 2weeks later for a second training session. Results: Comparing novices with the experienced group, the ergonomics and fluid handling modules resulted in construct validity, while the visualization module did not, and for the safety module the experienced group even scored significantly lower than novices in both exercises. The overall score showed only construct validity when the safety module was excluded. Concerning learning curves, all subjects improved significantly during the training on HystSim, with clear indication that the second training session was beneficial for novice surgeons. Conclusions: Construct validity for HystSim has been established for different modules of VR metrics on a new MMSS developed for diagnostic hysteroscopy. Careful refinement and further testing of metrics and scores is required before using them as assessment tools for operative skill

    Evaluation of a new virtual-reality training simulator for hysteroscopy

    Get PDF
    Background: To determine realism and training capacity of HystSim, a new virtual-reality simulator for the training of hysteroscopic interventions. Methods: Sixty-two gynaecological surgeons with various levels of expertise were interviewed at the 13th Practical Course in Gynaecologic Endoscopy in Davos, Switzerland. All participants received a 20-min hands-on training on the simulator and filled out a four-page questionnaire. Twenty-three questions with respect to the realism of the simulation and the training capacity were answered on a seven-point Likert scale along with 11 agree-disagree statements concerning the HystSim training in general. Results: Twenty-six participants had performed more than 50 hysteroscopies ("experts”) and 36 equal to or fewer than 50 ("novices”). Four of 60 (6.6%) responding participants judged the overall impression as "7 - absolutely realistic”, 40 (66.6%) as "6 - realistic”, and 16 (26.6%) as "5 - somewhat realistic”. Novices (6.48; 95% confidence interval [CI] 6.28-6.7) rated the overall training capacity significantly higher than experts (6.08; 95% CI 5.85-6.3), however, high-grade acceptance was found in both groups. In response to the statements, 95.2% believe that HystSim allows procedural training of diagnostic and therapeutic hysteroscopy, and 85.5% suggest that HystSim training should be offered to all novices before performing surgery on real patients. Conclusion: Face validity has been established for a new hysteroscopic surgery simulator. Potential trainees and trainers assess it to be a realistic and useful tool for the training of hysteroscopy. Further systematic validation studies are needed to clarify how this system can be optimally integrated into the gynaecological curriculu

    Potential impact of texture analysis in contrast enhanced CT in non-small cell lung cancer as a marker of survival: A retrospective feasibility study

    Get PDF
    The objective of this feasibility study was to assess computed tomography (CT) texture analysis (CTTA) of pulmonary lesions as a predictor of overall survival in patients with suspected lung cancer on contrast-enhanced computed tomography (CECT). In a retrospective pilot study, 94 patients (52 men and 42 women; mean age, 67.2 ± 10.8 yrs) from 1 center with non-small cell lung cancer (NSCLC) underwent CTTA on the primary lesion by 2 individual readers. Both simple and multivariate Cox regression analyses correlating textural parameters with overall survival were performed. Statistically significant parameters were selected, and optimal cutoff values were determined. Kaplan-Meier plots based on these results were produced. Simple Cox regression analysis showed that normalized uniformity had a hazard ratio (HR) of 16.059 (3.861-66.788, P < .001), and skewness had an HR of 1.914 (1.330-2.754, P < .001). The optimal cutoff values for both parameters were 0.8602 and 0.1554, respectively. Normalized uniformity, clinical stage, and skewness were found to be prognostic factors for overall survival in multivariate analysis. Tumor heterogeneity, assessed by normalized uniformity and skewness on CECT may be a prognostic factor for overall survival

    The shufflon of IncI1 plasmids is rearranged constantly during different growth conditions

    Get PDF
    One of the factors that can affect conjugation of IncI1 plasmids, amongst others, is the genetic region known as the shufflon. This multiple inversion system modifies the pilus tip proteins used during conjugation, thus affecting the affinity for different recipient cells. Although recombination is known to occur in in vitro conditions, little is known about the regulation and the extent of recombination that occurs. To measure the recombination of the shufflon, we have amplified the entire shufflon region and sequenced the amplicons using nanopore long-read sequencing. This method was effective to determine the order of the segments of the shufflon and allow for the analysis of the shufflon variants that are present in a heterogeneous pool of templates. Analysis was performed over different growth phases and after addition of cefotaxime. Furthermore, analysis was performed in different E. coli host cells to determine if recombination is likely to be influenced. Recombination of the shufflon was constantly ongoing in all conditions that were measured, although no differences in the amount of different shufflon variants or the rate at which novel variants were formed could be found. As previously reported, some variants were abundant in the population while others were scarce. This leads to the conclusion that the shufflon is continuously recombining at a constant rate, or that the method used here was not sensitive enough to detect differences in this rate. For one of the plasmids, the host cell appeared to have an effect on the specific shufflon variants that were formed which were not predominant in another host, indicating that host factors may be involved. As previously reported, the pilV-A and pilV-A' ORFs are formed at higher frequencies than other pilV ORFs. These results demonstrate that the recombination that occurs within the shufflon is not random. While any regulation of the shufflon affected by these in vitro conditions could not be revealed, the method of amplifying large regions for long-read sequencing for the analysis of multiple inversion systems proved effective.</p

    Evaluation of a new virtual-reality training simulator for hysteroscopy

    Full text link
    BACKGROUND: To determine realism and training capacity of HystSim, a new virtual-reality simulator for the training of hysteroscopic interventions. METHODS: Sixty-two gynaecological surgeons with various levels of expertise were interviewed at the 13(th) Practical Course in Gynaecologic Endoscopy in Davos, Switzerland. All participants received a 20-min hands-on training on the simulator and filled out a four-page questionnaire. Twenty-three questions with respect to the realism of the simulation and the training capacity were answered on a seven-point Likert scale along with 11 agree-disagree statements concerning the HystSim training in general. RESULTS: Twenty-six participants had performed more than 50 hysteroscopies ("experts") and 36 equal to or fewer than 50 ("novices"). Four of 60 (6.6%) responding participants judged the overall impression as "7 - absolutely realistic", 40 (66.6%) as "6 - realistic", and 16 (26.6%) as "5 - somewhat realistic". Novices (6.48; 95% confidence interval [CI] 6.28-6.7) rated the overall training capacity significantly higher than experts (6.08; 95% CI 5.85-6.3), however, high-grade acceptance was found in both groups. In response to the statements, 95.2% believe that HystSim allows procedural training of diagnostic and therapeutic hysteroscopy, and 85.5% suggest that HystSim training should be offered to all novices before performing surgery on real patients. CONCLUSION: Face validity has been established for a new hysteroscopic surgery simulator. Potential trainees and trainers assess it to be a realistic and useful tool for the training of hysteroscopy. Further systematic validation studies are needed to clarify how this system can be optimally integrated into the gynaecological curriculum

    Hot corrosion of TBC‐coated components upon combustion of low‐sulfur fuels

    No full text
    Gas turbine reliability is a crucial requirement for passenger safety in aviation and a secure energy supply. Hence, corrosive degradation of combustor parts, vanes, and blades in gas turbines must be prevented. One of the most severe forms of corrosion is alkali-sulfate-induced hot corrosion, which is associated with internal sulfidation of components and is usually anticipated to fade in importance in the absence of sulfur. However, the literature suggests that hot corrosion might still occur in low-sulfur combustion gases. In this study, established thermodynamic modeling methods are used to analyze the low-sulfur hot corrosion regime. Liquid sodium chromate is found to be stable in these conditions. A comparison of calculation results and engine findings suggests that high alkali levels can negatively impact thermal barrier coating life even if sulfur is absent in the fuel. Laboratory tests are carried out to validate the chromate formation on MCrAlY-coated specimens. It is shown that molten sodium chromate can alter the oxidation behavior of MCrAlY, promoting the formation of voluminous spinel. This represents a new and different form of hot corrosion compared to type I hot corrosion
    corecore